Find the value of (a² + √(a² - 1) )⁴ + (a² - √(a² - 1) )⁴
Solution:
Using binomial theorem, we will evaluate the expressions (a + b)⁴ and (a - b)⁴.
- (a + b)⁴ = ⁴C₀ a⁴ + ⁴C₁ a³b + ⁴C₂ a²b² + ⁴C₃ ab³ + ⁴C₄ b⁴
- (a - b)⁴ = ⁴C₀ a⁴ - ⁴C₁ a³b + ⁴C₂ a²b² - ⁴C₃ ab³ + ⁴C₄ b⁴
Therefore,
(a + b)⁴ + (a - b)4 = [(⁴C₀ a⁴ + ⁴C₁ a³b + ⁴C₂ a²b² + ⁴C₃ ab³ + ⁴C₄ b⁴) + (⁴C₀ a⁴
- ⁴C₁ a³b + ⁴C₂ a²b² - ⁴C₃ ab³ + ⁴C₄ b⁴)]
= 2( ⁴C₀ a⁴ + ⁴C₂ a²b² + ⁴C₄ b⁴)
= 2(a⁴ + 6a²b² + b⁴) (Using nCr formula)
= 2a⁴ + 12a²b² + 2b⁴
Now, we will replace'a' with a² and 'b' with √(a² - 1), then we get,
(a² + √(a² - 1) )⁴ + (a² - √(a² - 1) )⁴
= 2 (a2)4 + 12 (a2)2 (√(a² - 1))2 + 2(√(a² - 1))4
= 2a8 + 12a4 (a2 - 1) + 2 (a2 - 1)2
= 2a8 + 12a6 - 12a4 + 2(a4 -2a2 + 1)
= 2a8 + 12a6 - 12a4 + 2a4 - 4a2 + 2
= 2a8 + 12a6 - 10a4 - 4a2 + 2
NCERT Solutions Class 11 Maths Chapter 8 Exercise ME Question 6
Find the value of (a² + √(a² - 1) )⁴ + (a² - √(a² - 1) )⁴
Summary:
We evaluated the value of (a² + √(a² - 1) )⁴ + (a² - √(a² - 1) )⁴ to be 2a8 + 12a6 - 10a4 - 4a2 + 2
Math worksheets and
visual curriculum
visual curriculum