from a handpicked tutor in LIVE 1-to-1 classes
Prove the following: tan 4x = [4tan x(1 - tan²x)] / [1 - 6tan²x + tan⁴x]
Solution:
LHS = tan 4x
= tan 2(2x)
= (2tan 2x) / (1 - tan22x) [By double angle formulas, tan 2A = (2tan A) / (1 - tan2A)]
= [2(2tan x) / (1 - tan2x)] / [1 - {(2tan x) / (1 - tan2x)2}] [Again by the same formula]
= [(4tan x) / (1 - tan2x)] / [1 - (4tan2x) / (1 + tan4x - 2tan2x)] [Since (a - b)2 = a2 + b2 - 2ab]
= [(4tan x) / (1 - tan2x)] / [(1 + tan4x - 2tan2x - 4tan2x) / (1 + tan4x - 2tan2x)]
= [(4tan x) / (1 - tan2x)] × [(1 + tan4x - 2tan2x) / (1 + tan4x - 6tan2x)]
= [4tan x(1 - tan2x)2] / [(1 - tan2x) (1 + tan4x - 6tan2x)] [As a² + b² - 2ab = (a - b)²]
= [4tan x(1 - tan2x)] / [1 - 6tan2x + tan4x]
= RHS
NCERT Solutions Class 11 Maths Chapter 3 Exercise 3.3 Question 23
Prove the following: tan 4x = [4tan x(1 - tan²x)] / [1 - 6tan²x + tan⁴x]
Summary:
We got, tan 4x = [4tan x(1 - tan2x)] / [1 - 6tan2x + tan4x]. Hence Proved.
visual curriculum