# The perimeter of a rectangle is 40 m. Its length is four metres less than five times its breadth. Find the area of the rectangle.

**Solution:**

Given, the __perimeter of a rectangle__ is 40 m.

The length of the rectangle is four metres less than five times its breadth.

We have to find the area of the rectangle.

Let the breadth of the rectangle be x

Given, length = 5x - 4

Perimeter of rectangle = 2(length + breadth)

= 2(5x - 4 + x)

= 2(6x - 4)

= 12x - 8

Given, perimeter = 40 m

12x - 8 = 40

12x = 40 + 8

x = 48/12

x = 4 m

Length = 5(4) - 4

= 20 - 4

= 16 m

__Area of rectangle__ = length × breadth

= 16 × 4

= 64 m²

Therefore, the area of the rectangle is 64 m².

**✦ Try This: **The perimeter of a rectangle is 20 m. Its length is six metres less than two times its breadth. Find the area of the rectangle.

**☛ Also Check: **NCERT Solutions for Class 7 Maths Chapter 11

**NCERT Exemplar Class 7 Maths Chapter 9 Problem 75**

## The perimeter of a rectangle is 40 m. Its length is four metres less than five times its breadth. Find the area of the rectangle.

**Summary:**

The perimeter of a rectangle is 40 m. Its length is four metres less than five times its breadth. The area of the rectangle is 64 m²

**☛ Related Questions:**

- A wall of a room is of dimensions 5 m × 4 m. It has a window of dimensions 1.5 m × 1m and a door of . . . .
- Rectangle MNOP is made up of four congruent rectangles (Fig. 9.31). If the area of one of the rectan . . . .
- In Fig. 9.32, area of ∆ AFB is equal to the area of parallelogram ABCD. If altitude EF is 16 cm long . . . .

visual curriculum