Determine for which values of m the function Φ (x) = xm is a solution to the given equation.
(A) 3x2 d2y/dx2 + 11x dy/dx - 3y = 0
(B) x2 d2y/dx2 - x dy/dx - 5y = 0
Solution:
Given, Φ(x) = xm
We have to find the value of m.
y(x) = xm
y’(x) = mxm - 1 = (m/x)xm
y’’(x) = m(m - 1)xm - 2 = (m(m - 1)/x2)xm
A) 3x2 d2y/dx2 + 11x dy/dx - 3y = 0
3x2(m(m - 1)/x2)xm + 11x(m/x)xm - 3xm = 0
3(m(m - 1))xm + 11mxm - 3xm = 0
xm(3(m(m - 1)) + 11m - 3) = 0
3(m2 - m) + 11m - 3 = 0
3m2 - 3m + 11m - 3 = 0
3m2 + 8m - 3 = 0
3m2 + 9m - m - 3 = 0
3m(m + 3) - 1(m + 3) = 0
(3m - 1)(m + 3) = 0
3m - 1 = 0 ⇒ 3m = 1 ⇒ m = 1/3
m + 3 = 0 ⇒ m = -3
The general solution is of the form y = Φ(x) = \(C_{1}e^{m_{1}x}+C_{2}e^{m_{2}x}\)
Here, m1 = 1/3 and m2 = -3
So, \(C_{1}e^{\frac{1}{3}x}+C_{2}e^{-3x}\)
Therefore, the solution is \(C_{1}e^{\frac{1}{3}x}+C_{2}e^{-3x}\)
B) x2 d2y/dx2 - x dy/dx - 5y = 0
x2(m(m - 1)/x2)xm - x (m/x)xm - 5xm = 0
xm[m(m - 1) - m - 5] = 0
m2 - m - m - 5 = 0
m2 - 2m - 5 = 0
Using quadratic formula,
\(x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\)
Here, a = 1, b = -2 and c = -5
\(x=\frac{-(-2)\pm \sqrt{(-2)^{2}-4(1)(-5)}}{2(1)}\)
\(x=\frac{2\pm \sqrt{4+20}}{2}\)
\(x=\frac{2\pm \sqrt{24}}{2}\)
\(x=\frac{2\pm 2\sqrt{6}}{2}\)
\(x=1\pm \sqrt{6}\)
The general solution is of the form y = Φ(x) = \(C_{1}e^{m_{1}x}+C_{2}e^{m_{2}x}\)
Here, m1 = 1 + √6 and m2 = 1 - √6
So, \(C_{1}e^{(1-\sqrt{6})x}+C_{2}e^{(1-\sqrt{6})x}\)
Therefore, the solution is \(C_{1}e^{(1-\sqrt{6})x}+C_{2}e^{(1-\sqrt{6})x}\).
Therefore, the solution to
(A) 3x2 d2y/dx2 + 11x dy/dx - 3y = 0 is \(C_{1}e^{\frac{1}{3}x}+C_{2}e^{-3x}\)
(B) x2 d2y/dx2 - x dy/dx - 5y = 0 is \(C_{1}e^{(1-\sqrt{6})x}+C_{2}e^{(1-\sqrt{6})x}\).
Determine for which values of m the function Φ (x) = xm is a solution to the given equation.
(A) 3x2 d2y/dx2 + 11x dy/dx - 3y = 0
(B) x2 d2y/dx2 - x dy/dx - 5y = 0
Solution:
The value of m the function Φ (x) = x^m is a solution to the given equation.
(A) 3x2 d2y/dx2 + 11x dy/dx - 3y = 0 is \(C_{1}e^{\frac{1}{3}x}+C_{2}e^{-3x}\)
(B) x2 d2y/dx2 - x dy/dx - 5y = 0 is \(C_{1}e^{(1-\sqrt{6})x}+C_{2}e^{(1-\sqrt{6})x}\).
visual curriculum