Differentiate with respect to t. y = b cos(t) + t2 sin(t)
Solution:
y = b cos(t) + t2 sin(t)
y is a function of t. ⇒ y = f(t)
Let us differentiate the above equation w.r.t t
Consider b cos(t)
d(b cos(t))/dt = b. d(cos t)/dt
= b(-sin t)
=-b sin t
Consider b cos(t)
We use the product rule to differentiate t2 sin(t).
Here y = u(t) × v(t)
dy/ dt = u. dv/dt + v. du/dt
t2 sin(t) = t2 (cos t) + sin t (2t)
dy/dt =-b sin t + t2 (cos t) + sin t (2t)
Differentiate with respect to t. y = b cos(t) + t2 sin(t)
Summary:
Differentiating y = b cos(t) + t2 sin(t) with respect to t, we get dy/dt =-b sin t + t2 (cos t) + sin t (2t)
Math worksheets and
visual curriculum
visual curriculum