Expand (3 - 2x)6. What is the coefficient of the sixth term?
Solution:
Given (3 - 2x)6
Using binomial theorem, (x + a)n = 1 + nx + [n(n - 1)/2!]x2 + [n(n - 1)(n - 2)/3!]x3 +....
Here n = 6
(3 - 2x)6 = 36 + 6 × 35(-2x) + 15 × 34(-2x)2 + 20.33(-2x)3 + 15 × 32(-2x)4 + 6 × 3(-2x)5 + (-2x)6
(3 - 2x)6 = 729 + 1458(-2x) + 1215(4x2) - 540(8x3) + 135(16x4) - 18(32x5) + 64x6
(3 - 2x)6 = 729 - 2916x + 4860x2 - 4320x3 + 2160x4 - 576x5 + 64x6
Coefficient of 6th term is -576
Expand (3 - 2x)6. What is the coefficient of the sixth term?
Summary:
By Expanding (3 - 2x)6, the coefficient of the sixth term is -576.
Math worksheets and
visual curriculum
visual curriculum