Find a + b, 2a + 3b, |a|, and |a - b|. a = i + 4j - 3k, b = -4i - j + 5k
Solution:
Given vectors are
a = i + 4j - 3k, b = -4i - j + 5k
a + b = ( i + 4j - 3k) + ( -4i - j + 5k)
a + b= (1 - 4)i + (4 - 1)j + (5 - 3)k
a + b= -3i + 3j + 2k ---------> [a]
2a = 2(i + 4j - 3k) = 2i + 8j - 6k
3b = 3( -4i - j + 5k) = -12i - 3j + 15k
2a + 3b = (2i + 8j - 6k) + (-12i - 3j + 15k )
2a + 3b = -10i + 5j + 11k ---------> [b]
|a| = √12 + 42 + (-3)2 = √1 + 16 + 9 = √26 ---------> [c]
a - b = ( i + 4j - 3k) - ( -4i - j + 5k)
a - b = (1 - (-4))i + (4 + 1)j + (-3 - 5)k
a - b = (1 + 4)i + (4 + 1)j - (3 + 5)k
a - b = 5i +5j -8k ---------> [d]
Find a + b, 2a + 3b, |a|, and |a - b|. a = i + 4j - 3k, b = -4i - j + 5k
Summary:
The values of a + b, 2a + 3b, |a|, and |a - b|. a = i + 4j - 3k, b = -4i - j + 5k are -3i + 3j + 2k , -10i + 5j + 11k , √26, 5i + 5j - 8k respectively.
Math worksheets and
visual curriculum
visual curriculum