Find dy/dx by implicit differentiation. x2 /x + y = y2 + 5
Solution:
x2 /(x + y) = y2 + 5
x2 = (y2 + 5)(x + y)
Differentiating the above w.r.t. x we have:
2x = (x + y)d(y2 + 5)/dx + (y2 + 5)d(x + y)/dx
2x = 2(x + y)ydy/dx + (y2 + 5)dx/dx + (y2 + 5)dy/dx
2x = y2 + 5 + ( 2xy + 2y2 + y2 + 5 )dy/dx
2x - (y2 + 5) = (2xy + 3y2 + 5)dy/dx
dy/dx = (2x - y2 - 5)/(2xy + 3y2 + 5)
Find dy/dx by implicit differentiation. x2 /x + y = y2 + 5
Summary:
dy/dx by implicit differentiation of x2 /x + y = y2 + 5 is (2x - y2 - 5)/(2xy + 3y2 + 5)
Math worksheets and
visual curriculum
visual curriculum