from a handpicked tutor in LIVE 1-to-1 classes
Find the area of the surface. The part of the plane x+2y+3z=1 that lies inside the cylinder x2 + y2=3.
Solution:
Given plane x+2y+3z=1 and cylinder x2 + y2 = 3
Let us assume P is the projection on the plane x+2y+3z=1
The surface area of an equation is given by
∫∫ₚ √{1+(∂z/∂x)² + (∂z/∂y)²} dA
The plane is inside the cylinder.
By using cylindrical coordinates:
x = r cos θ, y = r sin θ
x2 + y2 = (rcos θ)2 +(rsin θ)2
= r2 (cos2 θ + sin2 θ)
= r2 . 1 = r2
r2 = 3 ⇒ r = √3
Thus P = {(r,θ)/ 0 ≤ r ≤ √3, 0 ≤ θ ≤ 2π}
x +2y + 3z =1
⇒ z = 1/3(1 - x - 2y)
∂z/∂x = -1/3 ; ∂z/∂y = -2/3
Surface Area = ∫∫ₚ √{1+(∂z/∂x)² + (∂z/∂y)²} dA
= ∫∫ₚ √{1+ (-⅓) ² + (-⅔) ²} dA
= ∫∫ₚ √(9+1+4)/ √9 dA
= √14 /3 \(\int\limits_0^{2π}\int\limits_0^{√3}\) dA is area of region P
= √14 /3 \(\int\limits_0^{2π} \int\limits_0^{√3}\) r. dr. dθ
= √14 /3 \(\int\limits_0^{2π}\) [r2 /2]\(^{√3}_0\) .dθ
= √14 /3 \(\int\limits_0^{2π}\) 3/2 .dθ
= √14/2 [θ]\(^{2π}_0\)
=√14/2 [2π - 0]
= π√14
Area of the plane that lies inside the given cylinder : (√14 /3) × 3π = π√14 sq. units
Find the area of the surface. The part of the plane x+2y+3z=1 that lies inside the cylinder x2 + y2=3.
Summary:
The area of the part of the plane x+2y+3z=1 that lies inside the cylinder x2 + y2=3 is π√14 sq. units.
visual curriculum