Find the cube roots of 125(cos 288° + i sin 288°).
Solution:
Let Z = 125(cos 288° + i sin 288°)
Taking cube root on both sides
Z1/3 = (125)1/3 [cos288° + i sin 288° ]1/3
Using De- Moivers theorem
If z = r [cos θ + i sinθ] then zn = rn[cos nθ + i sin nθ]
z1/3 = (53)1/3 [cos(288°/3)+ i sin (288°/3)]
z1/3 = 5 [ cos 96°+ i sin 96°]
Find the cube roots of 125(cos 288° + i sin 288°).
Summary:
The cube roots of 125(cos 288° + i sin 288°) is 5 [ cos 96°+ i sin 96°]
Math worksheets and
visual curriculum
visual curriculum