Find the cube roots of 27(cos 279° + i sin 279°).
Solution:
Let Z = 27(cos 279° + i sin 279°)
Taking cube root on both sides
Z1/3 = (27)1/3 [cos279° + i sin 279° ]1/3
Using De- Moivers theorem
If z = r [cos θ + i sinθ] then zn = rn[cos nθ + i sin nθ]
z1/3 = (33)1/3 [cos(279°/3)+ i sin (279°/3)]
z1/3 = 3[cos 93°+ i sin 93°]
Find the cube roots of 27(cos 279° + i sin 279°).
Summary:
The cube roots of 27(cos 279° + i sin 279°) is 3[cos93°+ i sin93°]
Math worksheets and
visual curriculum
visual curriculum