Find the cube roots of 8(cos 216° + i sin 216°).
Solution:
Let Z = 8(cos 216° + i sin 216°)
Taking cube root on both sides
Z1/3 = (8)1/3 [cos216° + i sin 216° ]1/3
Using De- Moivers theorem
If z = r [cos θ + i sinθ] then zn = rn [cos nθ + i sin nθ]
z1/3 = (23)1/3 [cos(216°/3) + i sin (216°/3)]
z1/3 = 2 [ cos72°+ i sin72°]
Find the cube roots of 8(cos 216° + i sin 216°).
Summary:
The cube root of 8(cos 216° + i sin 216°) is 2 [ cos72°+ i sin72°].
Math worksheets and
visual curriculum
visual curriculum