from a handpicked tutor in LIVE 1-to-1 classes
Find the exact length of the polar curve. r = e2θ, 0 ≤ θ ≤ 2π
Solution:
Given, r = e2θ, 0 ≤ θ ≤ 2π
We have to find the exact length of the polar curve.
The length of the polar curve is given by \(\int_{a}^{b}\sqrt{(r^{2}+(\frac{dr}{d\theta })^{2})d\theta }\)
We know, r = e2θ
dr/dθ = 2e2θ
Substituting the values in the formula,
= \(\int_{0}^{2\pi }\sqrt{((e^{2\theta })^{2}+(2e^{2\theta })^{2})d\theta }\)
= \(\int_{0}^{2\pi }\sqrt{((e^{2\theta })^{2}+4(e^{2\theta })^{2})d\theta }\)
Taking out common term,
= \(\int_{0}^{2\pi }\sqrt{((e^{2\theta })^{2}(1+4)d\theta }\)
= \(\int_{0}^{2\pi }e^{2\theta }\sqrt{5}\:d\theta\)
= \(\sqrt{5}\int_{0}^{2\pi }e^{2\theta }\: d\theta\)
= \(\\\frac{\sqrt{5}}{2}\left [ e^{2\theta } \right ]_{0}^{2\pi } \\ \\\frac{\sqrt{5}}{2}\left [ e^{2(2\pi ) } -e^{2(0)}\right] \\ \\\frac{\sqrt{5}}{2}\left [ e^{4\pi } -e^{0}\right] \\ \\\frac{\sqrt{5}}{2}\left [ e^{4\pi } -1\right]\)
Therefore, the length of the polar curve is \(\frac{\sqrt{5}}{2}\left [ e^{4\pi } -1\right]\)
Find the exact length of the polar curve. r = e2θ, 0 ≤ θ ≤ 2π
Summary:
The exact length of the polar curve r = e2θ, 0 ≤ θ ≤ 2π is \(\frac{\sqrt{5}}{2}\left [ e^{4\pi } -1\right]\).
visual curriculum