from a handpicked tutor in LIVE 1-to-1 classes
Find the exact length of the polar curve. r = e5θ, 0 ≤ θ ≤ 2π
Solution:
Given, r = e5θ, 0 ≤ θ ≤ 2π
We have to find the exact length of the polar curve.
The length of the polar curve is given by \(\int_{a}^{b}\sqrt{(r^{2}+(\frac{dr}{d\theta })^{2})d\theta }\)
We know, r = e5θ
dr/dθ = 5e5θ
Substituting the values in the formula,
= \(\int_{0}^{2\pi }\sqrt{((e^{5\theta })^{2}+(5e^{5\theta })^{2})d\theta }\)
= \(\int_{0}^{2\pi }\sqrt{((e^{5\theta })^{2}+25(e^{5\theta })^{2})d\theta }\)
Taking out common term,
= \(\int_{0}^{2\pi }\sqrt{((e^{5\theta })^{2}(1+25)d\theta }\)
= \(\int_{0}^{2\pi }e^{5\theta }\sqrt{26}\:d\theta\)
= \(\sqrt{26}\int_{0}^{2\pi }e^{5\theta }\: d\theta\)
= \(\sqrt{26}\left [ 5e^{5\theta } \right ]_{0}^{2\pi }\)
= \(\sqrt{26}\times 5\left [ e^{5\theta } \right ]_{0}^{2\pi }\)
= \(\sqrt{26}\times 5\left [ e^{5(2\pi ) } -e^{5(0)}\right]\)
= \(\sqrt{26}\times 5\left [ e^{10\pi } -e^{0}\right]\)
We know, e0 = 1
= \(\sqrt{26}\times 5\left [ e^{10\pi } -1\right]\)
Therefore, the exact length of the polar curve is \(\sqrt{26}\times 5\left [ e^{10\pi } -1\right]\)
Find the exact length of the polar curve. r = e5θ, 0 ≤ θ ≤ 2π
Summary:
The exact length of the polar curve r = e5θ, 0 ≤ θ ≤ 2π is \(\sqrt{26}\times 5\left [ e^{10\pi } -1\right]\)
visual curriculum