Find the general solution of the given system dx/dt = -4x + 2y, dy/dt = -5/2 x + 2y
Solution:
dx/dt = -4x + 2y --- (1)
dy/dt = (-5/2)x + 2y --- (2)
Dividing (2) by (1) we get
dy/dx = [ (-5/2)x + 2y]/(-4x + 2y) --- (3)
To find the general solution let,
y = vx --- (4)
Differentiating the above w.r.t. X we have
dy/dx = v + xdv/dx --- (5)
Substituting (3) and (4) in equation (5) above we get,
[(-5/2)x + 2(vx)]/[(-4x + 2(vx)] = v + x(dv/dx)
⇒ (-5x + 4vx)/(-8x + 4vx) = v + xdv/dx
⇒ [(-5 + 4v)/(-8 + 4v)] - v = x(dv/dx)
⇒ (-5 + 4v + 8v - 4v2)/(-8 + 4v) = x(dv/dx)
⇒ (-5 + 12v -4v2)/(-8 + 4v) = x(dv/dx)
⇒ (-8 + 4v)dv/(-5 + 12v -4v2) = dx/x
⇒ (4v - 8)dv/(4v2 - 12v + 5) = dx/x
⇒ (1/2)(8v - 16)dv/(4v2 - 12v + 5) = -dx/x
Taking Integrals on both sides
⇒1/2\(\int\)(8v -12 - 4 )dv/(4v2 - 12v + 5) = -\(\int\)dx/x
⇒ 1/2\(\int\)(8v - 12)dv/(4v2 - 12v + 5) - 1/2\(\int\)4/(4v2 - 12v + 5) = -LnIxI + c
⇒ (1/2 ) ln I 4v2 - 12v + 5 I - (1/2)\(\int\)4dv/(4v2 - 12v + 5) = - lnI x I + c
4v2 - 12v + 5 is not convertible into a2 + b2 and hence the second term on the LHS does not have an integral solution
Find the general solution of the given system dx/dt = -4x + 2y, dy/dt = -5/2 x + 2y
Summary:
There is no general solution of the given system dx/dt = -4x + 2y, dy/dt = -5/2 x + 2y
visual curriculum