For the vectors a = 1, 4 and b = 2, 3 , find orth ab.
Solution:
Given, vectors a = (1, 4) and b = (2, 3)
We have to find orth ab.
Orthab = b - projab
projab = \(\frac{a.b}{\left | a \right |^{2}}*a\)
Now, a.b = (1, 4).(2, 3)
= 1(2) + 4(3)
= 2 + 12
a.b = 14
|a| is the modulus of vector a.
\(\left | a \right |=\sqrt{1^{2}+4^{2}}\)
\(\left | a \right |=\sqrt{1+16}\)
\(\left | a \right |=\sqrt{17}\)
\(\left | a \right |^{2}=(\sqrt{17})^{2}\)
\(\left | a \right |^{2}=17\)
projab = \(\frac{14}{17}.(1, 4)\)
= \(\frac{14\times 1}{17},\frac{14\times 4}{17}\)
= \(\frac{14}{17},\frac{56}{17}\)
projab = \(\frac{14}{17},\frac{56}{17}\)
Orthab = (2, 3) - \(\frac{14}{17},\frac{56}{17}\)
\(= 2-\frac{14}{17},3-\frac{56}{17}\)
= \(\frac{20}{17},\frac{-5}{17}\)
Orthab = (20/17, -5/17)
Therefore, Orthab = (20/17, -5/17)
For the vectors a = 1, 4 and b = 2, 3 , find orth ab.
Summary:
For the vectors a = (1, 4) and b = (2, 3), orth ab is (20/17, -5/17).
visual curriculum