If r(t) = 3e3t, 2e-3t, 2te3t, find t(0), r''(0), and r'(t) · r''(t).
Solution:
Given, r(t) = 3e3t, 2e-3t, 2te3t
We have to find t(0), r’’(0) and r’(t).r’’(t).
Put t = 0
r(0) = 3e3(0), 2e-3(0), 2te3(0)
r(0) = (3, 2, 0)
Therefore, at t(0) the value of r(0) = (3, 2, 0)
On differentiating,
r’(t) = 9e3t, -6e-3t, 6te3t
Put t = 0
r’(0) = 9e3(0), -6e-3(0), 6te3(0)
r’(0) = (9, -6, 0)
On differentiating,
r’’(t) = 27e3t, 18e-3t, 18te3t
Put t = 0
r’’(0) = 27e3(0), 18e-3(0), 18te3(0)
r’’(0) = (27, 18, 0)
Therefore, r’’(0) = (27, 18, 0)
r’(0).r’’(0) = (9, -6, 0).(27, 18, 0)
= 9(27) - 6(18) + 0(0)
= 243
Therefore, r’(0).r’’(0) = 135.
Therefore, t(0) = (3, 2, 0), r''(0) = (27, 18, 0) and r'(0) · r''(0) = 135
If r(t) = 3e3t, 2e-3t, 2te3t, find t(0), r''(0), and r'(t) · r''(t).
Summary:
If r(t) = 3e3t, 2e-3t, 2te3t, t(0) = (3, 2, 0), r''(0) = (27, 18, 0), r'(0) · r''(0) = 135
Math worksheets and
visual curriculum
visual curriculum