If the nth Partial sum of a series An is Sn = n - 5/n + 5. Find An and A1.
Solution :
Given:
Nth partial sum of a series An is : Sn = (n - 5)/n + 5
We know that An = Sn - Sn - 1
= (n - 5)/(n + 5) - [(n - 1) - 5/(n - 1) + 5]
= (n - 5)/(n + 5) - [(n - 6)/(n + 4)]
= [{n - 5}(n + 4) - (n + 5){n - 6}] / (n + 4)(n + 5)
= {n2 + 4n - 5n - 20 - (n2 + 5n - 6n - 30)/ (n + 5)(n + 4)
= {n2 + 4n - 5n - 20 - n2 - 5n + 6n + 30)/ (n + 5)(n + 4)
= 10/ (n + 5)(n + 4)
An = 10/ (n + 5)(n + 4); n > 0
= Undefined; n = -4, -5
A1 = 10/ (n + 5)(n + 4) when n = 1
A1 = 10/(1 + 5)(1 + 4) = 10/30 = 1/3
If the nth Partial sum of a series An is Sn = n - 5/n + 5. Find An and A1.
Summary :
If the nth partial sum of a series An is Sn = n - 5/n + 5, then An is 10/(n + 5)(n + 4) ; n > 0 and, the value of A1 is 1/3.
Math worksheets and
visual curriculum
visual curriculum