Let r = x i + y j + z k and r = |r|. If F = r/rp, find div F. (Enter your answer in terms of r and p.)
Solution:
It is given that, r = x i + y j + z k and r = |r|.
F = R/rp
F= <x, y, z> / |<x, y, z>|p
F = <x/(x2 + y2 + z2)(p/2), y/(x2 + y2 + z2)(p/2), z/(x2 + y2 + z2)(p/2)>.
So, For div F,
Then, we take partial derivative:
div F = (d/dx) x/(x2 + y2 + z2)(p/2) + (d/dy) y/(x2 + y2 + z2)(p/2) + (d/dz) z/(x2 + y2 + z2)(p/2)
Now, we have to use the rational derivative rule to find the derivatives:
div F = [1(x2 + y2 + z2)(p/2) - x × px(x2 + y2 + z2)(p/2 - 1)] / (x2 + y2 + z2)p + [1(x2 + y2 + z2)(p/2) - y × py(x2 + y2 + z2)(p/2 - 1)] / (x2 + y2 + z2)p + [1(x2 + y2 + z2)(p/2) - z × pz(x2 + y2 + z2)(p/2 - 1)] / (x2 + y2 + z2)p
div F = (x2 + y2 + z2)(p/2 - 1){[(x2 + y2 + z2) - px2] + [(x2 + y2 + z2) - py2] + [(x2 + y2 + z2) - pz2]} /(x2 + y2 + z2)p
div F = [3(x2 + y2 + z2 - p(x2 + y2 + z2)] / (x2 + y2 + z2)(p/2 + 1)
div F = (3 - p) (x2 + y2 + z2) / (x2 + y2 + z2)(p/2 + 1)
div F = (3 - p)/(x2 + y2 + z2)(p/2)
Now it comes like,
div F = (3 - p)/rp.
Therefore, div F = (3 - p)/rp.
Let r = x i + y j + z k and r = |r|. If F = r/rp, find div F. (Enter your answer in terms of r and p.)
Summary:
Let r = x i + y j + z k and r = |r|. If F = r/rp, div F = (3 - p)/rp.
visual curriculum