The point P(-10, -2) is on the terminal side of an angle x. Find the exact values of each trigonometric function
Solution:
Given, the point p(-10, -2) is on the terminal side of θ.
We have to find the exact values of each trigonometric function.
Let r be the length of the line segment drawn from the origin to the point .
r = √x2 + y2
Here, x = -10 and y = -2
r = √(-10)2 + (-2)2
= √100 + 4
r = √104
sin θ = y/r = -2/√104
cos θ = x/r = -10/√104
tan θ = y/x = -2/-10 = 1/5
cosec θ = 1/sin θ = -√104/2
sec θ = 1/cos θ = -√104/10
cot θ = 1/tan θ = 5
Therefore, the exact values of each trigonometric function are -2/√104, -10/√104, 1/5, -√104/2, -√104/10 and 5.
The point P(-10, -2) is on the terminal side of an angle x. Find the exact values of each trigonometric function
Summary:
The point p(-10, -2) lies on the terminal side of θ. The exact values of each trigonometric function are -2/√104, -10/√104, 1/5, -√104/2, -√104/10 and 5.
Math worksheets and
visual curriculum
visual curriculum