# Use this equation to find dy/dx. 6y cos (x) = x^{2} + y^{2 }

We can make use of uv method of differentiation to solve the given question.

## Answer: The differential of the equation 6y cos (x) = x^{2} + y^{2}, with respect to x is dy/dx = (6ysin x + 2x) / (6cos x - 2y).

Let's look into the solution

**Explanation:**

Given: 6y cos (x) = x^{2} + y^{2}

Differentiating on both sides with respect to x, we get

6 dy/dx cos x - 6y sin x = 2x + 2y dy/dx

⇒ 6 dy/dx cos x - 2y dy/dx = 6y sin x + 2x

⇒ dy/dx (6 cos x - 2y) = 6y sin x + 2x

⇒ dy/dx = (6ysin x + 2x) / (6cos x - 2y)