What is the coefficient of the x4-term in the binomial expansion of (x + 3)12?
Solution:
The given binomial expansion is (x + 3)12 ------------------- (1)
The general form of binomial expansion is (a + b)n -------- (2)
Comparing (1) and (2)
a = x
b = 3
n = 12
We have to find the coefficient of the term x4
This implies r = 3
The terms in the expansion can be obtained using
\(T_{r+1}=\, ^{n}C_{r}a^{(n-r)}b^{r}\)
Now, \(\\T_{3+1}=\, ^{12}C_{3}(x)^{(12-3)}(3)^{3}\\T_{4}=\, ^{12}C_{3}(x)^{9}(3)^{3}\)
\(T_{4}=\, ^{12}C_{3}x^{9}(27)\)
\(^{12}C_{3}=\frac{12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{(3\times 2\times 1)(9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1)}\)
\(^{12}C_{3}=\frac{12\times 11\times 10}{3\times 2\times 1}=\frac{12\times 110}{6}=220\)
So, \(T_{4}=220(x^{9})(27)=5940x^{9}\)
Therefore, the coefficient of the xx4-term is 5940.
What is the coefficient of the x4-term in the binomial expansion of (x + 3)12?
Summary:
The coefficient of the x4-term in the binomial expansion of (x + 3)12 is 5940
visual curriculum