from a handpicked tutor in LIVE 1-to-1 classes
Find the derivative of (i) 2x - 3/4 (ii) (5x³ + 3x - 1)(x - 1)
(iii) x⁻ ³ (5 + 3x) (iv) x⁵ (3 - 6x⁻ ⁹) (v) x⁻ ⁴ (3 - 4x⁻ ⁵)
(vi) 2/(x + 1) - x²/(3x - 1)
Solution:
(i) Let f (x) = 2x - 3/4
f' (x) = d/dx (2x - 3/4)
= 2 d/dx x - d/dx (3/4)
= 2 (1) - 0
= 2
(ii) Let f (x) = (5x3 + 3x - 1)(x - 1)
By Leibnitz product rule,
f'(x) = (5x3 + 3x - 1) d/dx (x - 1) + (x - 1) d/dx (5x3 + 3x - 1)
= (5x3 + 3x - 1)(1) + ( x - 1)(5.3x2 + 3 - 0)
= (5x3 + 3x - 1) + (x - 1)(15x2 + 3)
= 5x3 + 3x - 1 + 15x3 + 3x - 15x2 - 3
= 20x3 - 15x2 + 6x - 4
(iii) Let f (x) = x- 3 (5 + 3x)
By Leibnitz product rule,
f' ( x) = x- 3 d/dx (5 + 3x) + (5 + 3x) d/dx (x- 3)
= x- 3 (0 + 3) + (5 + 3x)(- 3x- 3 - 1 )
= x- 3 (3) + (5 + 3x)(- 3x -4)
= 3x- 3 - 15x- 4 - 9x- 3
= - 6x- 3 - 15x- 4
= - 3x- 3 (2 + 5/x)
= - 3x- 3/x (2x + 5)
= - 3/x4 (5 + 2x)
(iv) Let f (x) = x5 (3 - 6x- 9)
By Leibnitz product rule,
f '(x) = x5 d/dx (3 - 6x- 9) + (3 - 6x- 9) d/dx (x5)
= x5 [0 - 6(- 9) x- 9 - 1]+ (3 - 6x- 9 )(5x4)
= x5 (54x- 10 ) + 15x4 - 30x- 5
= 54x- 5 - 30x- 5 + 15x4
= 24x- 5 + 15x4
= 15x4 + 24/x5
(v) Let f (x) = x- 4 (3 - 4x - x- 5)
By Leibnitz product rule,
f '(x) = x-4 d/dx (3 - 4x- 5) + (3 - 4x- 5) d/dx (x-4)
= x- 4 [0 - 4 (- 5) x-5 - 1] + (3 - 4x- 5 )(- 4) x- 4 - 1
= x- 4 (20x- 6 ) + (3 - 4x- 5 )(- 4x- 5)
= 20x- 10 - 12x- 5 + 16x- 10
= 36x- 10 - 12x- 5
= -12/x5 + 36/x10
(vi) Let f (x) = 2/(x + 1) - x2/(3x - 1)
f' (x) = d/dx [2/(x + 1) - x2/(3x - 1)]
By quotient rule,
f' (x) = [(x + 1) d/dx (2) - 2 d/dx (x + 1)] / (x + 1)2 - [(3x - 1) d/dx (x2)- x2 d/dx (3x - 1)] / (3x - 1)2
= [(x + 1)(0) - 2(1)]/(x + 1)2 - [(3x - 1)(2x) - x2 (3)]/(3x - 1)2
= - 2/(x + 1)2 - [6x2 - 2x - 3x2]/(3x - 1)2
= - 2/(x + 1)2 - [x (3x - 2)]/(3x - 1)2
NCERT Solutions Class 11 Maths Chapter 13 Exercise 13.2 Question 9
Find the derivative of (i) 2x - 3/4 (ii) (5x³ + 3x - 1)(x - 1) (iii) x⁻ ³ (5 + 3x) (iv) x⁵ (3 - 6x⁻ ⁹) (v) x⁻ ⁴ (3 - 4x⁻ ⁵) (vi) 2/(x + 1) - x²/(3x - 1)
Summary:
The derivatives are (i) 2 (ii) 20x3 - 15x2 + 6x - 4 (iii) - 3/x4 (5 + 2x) (iv) 15x4 + 24/x5 (v) -12/x5 + 36/x10 (vi) - 2/(x + 1)2 - [x (3x - 2)]/(3x - 1)2
visual curriculum