Find the derivative of xⁿ + axⁿ ⁻ ¹ + a² xⁿ ⁻ ² + ... + aⁿ ⁻ ¹x + aⁿ for some fixed real number a
Solution:
Let f (x) = xn + axn - 1 + a2 xn - 2 + ... + an - 1x + an
d/dx f (x) = d/dx [xn + axn - 1 + a2 xn - 2 + ... + an - 1x + an]
On using derivative formula d/dx (xn) = nxn - 1, we obtain
f' (x) = nxn - 1 + a (n - 1) xn - 2 + a2 (n - 2) xn - 3 + .... + an - 1 (1) + an (0)
Thus, f' (x) = nxn - 1 + a (n - 1) xn - 2 + a2 (n - 2) xn - 3 + .... + an - 1
NCERT Solutions Class 11 Maths Chapter 13 Exercise 13.2 Question 6
Find the derivative of xⁿ + axⁿ ⁻ ¹ + a² xⁿ ⁻ ² + ... + aⁿ ⁻ ¹x + aⁿ for some fixed real number a
Summary:
The derivative of xⁿ + axⁿ ⁻ ¹ + a² xⁿ ⁻ ² + ... + aⁿ ⁻ ¹x + aⁿ for some fixed real number a is f' (x) = nxn - 1 + a (n - 1) xn - 2 + a2 (n - 2) xn - 3 + .... + an - 1
Math worksheets and
visual curriculum
visual curriculum