Find the expansion of (3x² – 2ax + 3a²)³ using binomial theorem
Solution:
Using the binomial theorem, (3x² – 2ax + 3a²)³ can be expanded as follows by writing it as [(3x² + (– 2ax + 3a²)]³.
Then we get,
(3x2 – 2ax + 3a2)3 = 3C₀ (3x2)3 + 3C₁ (3x2)2 (-2ax + 3a2) + 3C₂ (3x2) (-2ax + 3a2)2 + 3C₃ (-2ax + 3a2)3
Now using the formulas of (a+b)³ and (a+b)²,
= 27x6 + 3 (9x4) (-2ax + 3a2) + 3 (3x2) (4a2x2 + 9a4 - 12 a3x) + (-8a3x3 + 36 a4x2 - 54a5x + 27a6)
= 27x6 - 54ax5 + 81a2x4 + 36a2x4 + 81 a4x2 - 108 a4x3 - 8 a3x3 + 36 a4x2 - 54a5x + 27a6
= 27x6 - 54ax5 + 117a2x4 - 116a3x3 + 117a4x2 - 54a5x + 27a6
NCERT Solutions Class 11 Maths Chapter 8 Exercise ME Question 10
Find the expansion of (3x² – 2ax + 3a²)³ using binomial theorem
Summary:
We found the expansion of (3x² – 2ax + 3a²)³ using binomial theorem to be 27x6 - 54ax5 + 117a2x4 - 116a3x3 + 117a4x2 - 54a5x + 27a6
Math worksheets and
visual curriculum
visual curriculum