If a(1/b + 1/c), b(1/c + 1/a), c(1/a + 1/b) are in A.P, prove that a, b, c are in A.P
Solution:
It is given that a(1/b + 1/c), b(1/c + 1/a), c(1/a + 1/b) are in A.P.
Therefore,
b(1/c + 1/a) - a(1/b + 1/c) = c(1/a + 1/b) - b(1/c + 1/a)
⇒ b (a + c)/ac - a (b + c)/bc = c (a + b)/ab - b (a + c)/ac
⇒ (b2a + b2c - a2b - a2c)/abc = (c2a + c2b - b2a - b2c)/abc
⇒ b2a - a2b + b2c - a2c = c2a - b2a + c2b - b2c
⇒ ab (b - a) + c (b2 - a2 ) = a (c2 - b2 ) + bc (c - b)
⇒ ab (b - a) + c (b + a)(b - a) = a (c - b)(c + b) + bc (c - b)
⇒ (b - a)(ab + cb + ca) = (c - b)(ac + ab + bc)
⇒ b - a = c - b
Thus, a, b, c are in A.P. proved
NCERT Solutions Class 11 Maths Chapter 9 Exercise ME Question 16
If a(1/b + 1/c), b(1/c + 1/a), c(1/a + 1/b) are in A.P, prove that a, b, c are in A.P
Summary:
We know that a(1/b + 1/c), b(1/c + 1/a), c(1/a + 1/b) are in A.P, using this we proved that a, b and c are in A.P
Math worksheets and
visual curriculum
visual curriculum