In Fig. 10.9, ∠AOB = 90º and ∠ABC = 30º, then ∠CAO is equal to:
a. 30º
b. 45º
c. 90º
d. 60º
Solution:
In triangle OAB
∠OAB + ∠ABO + ∠BOA = 180º
As the angles opposite to equal sides are equal
∠OAB + ∠OAB + 90º = 180º
2∠OAB + 90º = 180º
By further calculation
2∠OAB = 180º - 90º
2∠OAB = 90º
Dividing both sides by 2
∠OAB = 45º …. (1)
In triangle ACB
∠ACB + ∠CBA + ∠CAB = 180º
Substituting the values
45º + 30º + ∠CAB = 180º
By further calculation
∠CAB = 180º - 75º
∠CAB = 105º
We know that
∠CAO + ∠OAB = 105º
Substituting the values
∠CAO + 45º = 105º
∠CAO = 105º - 45º
∠CAO = 60º
Therefore, ∠CAO is equal to 60º.
✦ Try This: In the given figure, O is the centre of the circle. If ∠ACB = 50°, find ∠OAB.
☛ Also Check: NCERT Solutions for Class 9 Maths Chapter 10
NCERT Exemplar Class 9 Maths Exercise 10.1 Problem 10
In Fig. 10.9, ∠AOB = 90º and ∠ABC = 30º, then ∠CAO is equal to: a. 30º, b. 45º, c. 90º, d. 60º
Summary:
A circle can be defined as a 2D figure formed by a set of points that are adjacent to each other and are equidistant from a fixed point. In Fig. 10.9, ∠AOB = 90º and ∠ABC = 30º, then ∠CAO is equal to 60º
☛ Related Questions:
- The angles subtended by a chord at any two points of a circle are equal. Is the given statement true . . . .
- Two chords of a circle of lengths 10 cm and 8 cm are at the distances 8.0 cm and 3.5 cm, respectivel . . . .
- Two chords AB and CD of a circle are each at distances 4 cm from the centre. Then AB = CD. Is the gi . . . .
visual curriculum