Prove that: sin 3x + sin 2x - sin x = 4sin x cos x/2 cos 3x/2
Solution:
LHS = sin 3x + sin 2x - sin x
= sin 3x + (sin 2x - sin x)
= sin 2(3x/2) + [2cos {(2x + x) / 2} sin {(2x - x) / 2}] [Because sin A - sin B = 2cos {(A + B) / 2} sin {(A - B) / 2}]
= 2sin 3x/2 cos 3x/2 + 2cos 3x/2 sin x/2 [By double angle formulas, sin 2A = 2sin A cos A]
= 2cos (3x/2) [sin 3x/2 + sin x/2]
= 2cos (3x/2) [2sin {(3x/2 + x/2) / 2} cos {(3x/2 - x/2) / 2}] [Because sin A + sin B = 2sin {(A + B) / 2} cos {(A - B) / 2}]
= 2cos (3x/2) [2sin x cos x/2]
= 4sin x cos x/2 cos 3x/2
= RHS
NCERT Solutions Class 11 Maths Chapter 3 Exercise ME Question 7
Prove that: sin 3x + sin 2x - sin x = 4sin x cos x/2 cos 3x/2
Summary:
We got, sin 3x + sin 2x - sin x = 4sin x cos x/2 cos 3x/2. Hence Proved
Math worksheets and
visual curriculum
visual curriculum