Prove that the product of the lengths of the perpendiculars drawn from the points (√a² - b², 0) and (- √a² - b², 0) to the line x/a cosθ + y/b sinθ = 1 is b²
Solution:
The equation of the given line is
x/a cosθ + y/b sinθ = 1
bx cosθ + ay sinθ - ab = 0 ....(1)
Length of the perpendicular from point (√a² - b², 0) to the line (1) is
p1 = |b cosθ (√a² - b²) + a sinθ (0) - ab|/√b²cos²θ + a²sin²θ
= |b cosθ (√a² - b²) - ab|/√b²cos²θ + a²sin²θ ....(2)
Length of the perpendicular from point (- √a² - b², 0) to the line (2) is
p2 = |b cosθ (- √a² - b²) + a sinθ (0) - ab|/√b²cos²θ + a²sin²θ
= |b cosθ (√a² - b²) + ab|/√b²cos²θ + a²sin²θ ....(3)
On multiplying equations (2) and (3), we obtain
[|b cosθ (√a² - b²) - ab||b cosθ (√a² - b²) + ab|]/(√b²cos²θ + a²sin²θ)²
= [|b cosθ (√a² - b²) - ab||b cosθ (√a² - b²) + ab|]/(b²cos²θ + a²sin²θ)
= |(b cosθ √a² - b²)² - (ab)²|/(b²cos²θ + a²sin²θ)
= |b² cos²θ (a² - b²) - a²b²|/(b²cos²θ + a²sin²θ)
= |a²b² cos²θ - b⁴cos²θ - a²b²|/(b²cos²θ + a²sin²θ)
= b² |a² cos²θ - b² cos²θ - a²|/(b²cos²θ + a²sin²θ)
= b² |a² cos²θ - b² cos²θ - a²sin²θ - a²cos²θ|/(b²cos²θ + a²sin²θ) [∵ sin²θ + cos²θ = 1]
= b² |- (b² cos²θ + a²sin²θ)|/(b²cos²θ + a²sin²θ)
= b² (b² cos²θ + a²sin²θ)/(b²cos²θ + a²sin²θ)
= b²
Hence, proved
NCERT Solutions Class 11 Maths Chapter 10 Exercise ME Question 23
Prove that the product of the lengths of the perpendiculars drawn from the points (√a² - b², 0) and (- √a² - b², 0) to the line x/a cosθ + y/b sinθ = 1 is b²
Summary:
We proved that the product of the lengths of the perpendiculars drawn from the points (√a² - b², 0) and (- √a² - b², 0) to the line x/a cosθ + y/b sinθ = 1 is b²
visual curriculum