Evaluate lim h → 0 [√(9 + h) - 3] / h.
We will use the concepts of limit in order to find the required answer.
Answer: The value of the lim h → 0 [√(9 + h) - 3] / h is 1/6
Let us see how we will use the concept of limit in order to find the required answer.
Explanation:
Given: lim h → 0 [√(9 + h) - 3] / h
let's rationalize the numerator by multiply and divide [√(9 + h) - 3] by [√(9 + h) + 3]
lim h → 0 [√(9 + h) - 3] / h = lim h → 0 [√(9 + h) - 3] [√(9 + h) + 3] / h[√(9 + h) + 3]
= lim h → 0 [{√(9 + h)}2 - 32] / h[√(9 + h) + 3] {since a2 - b2 = (a + b) (a - b)}
= lim h → 0 [9 + h - 9] / h[√(9 + h) + 3]
= lim h → 0 [h] / h[√(9 + h) + 3]
= lim h → 0 1/[√(9 + h) + 3]
= 1/[√(9) + 3] { on substituting h = 0}
= 1/[3 + 3]
= 1/6
Hence, the value of the lim h → 0 [√(9 + h) - 3] / h is 1/6.
Math worksheets and
visual curriculum
visual curriculum