Evaluate the integral. (use c for the constant of integration.) ∫2tan4(x) sec6(x) dx.
Solution:
Given the integral: ∫2tan4(x) sec6(x) dx
⇒ 2 ∫tan4(x) sec4(x) sec2(x) dx
⇒ 2 ∫tan4(x) (sec2(x))2 sec2(x) dx
⇒ 2 ∫tan4(x) (tan2x + 1)2 sec2(x) dx
Let tan x = t ⇒ sec2x dx = dt
⇒ 2 ∫t4 (t2 + 1)2 dt
⇒ 2 ∫t4 (t4 + 2t2 + 1) dt
⇒ 2 ∫(t8 + 2t6 + t4) dt
⇒ 2 [t9 / 9 + 2 × t7 / 7 + t5 / 5] + C
⇒ 2/9 (tan x)9 + 2/7 (tan x)7 + 2/5 (tan x)5 + C
Evaluate the integral. (use c for the constant of integration.) ∫2tan4(x) sec6(x) dx.
Summary:
Integration of ∫2tan4(x) sec6(x) dx is 2/9 (tan x)9 + 2/7 (tan x)7 + 2/5 (tan x)5 + C
Math worksheets and
visual curriculum
visual curriculum