Find 10 partial sums of the series. (Round your answers to five decimal places.) \(\sum_{n=1}^{\infty }\frac{16}{(-3)^{n}}\)
Solution:
Given, \(\sum_{n=1}^{\infty }\frac{16}{(-3)^{n}}\)
We have to find the 10 partial sums of the series.
The sequence of terms is
When n= 1, 16/-31=16/-3=-5.33333
When n= 2, 16/-32 = 16/9 =1.77778
When n= 3, 16/-33 = 16/-27=-0.59259
When n= 4, 16/-34 = 16/81 =0.19753
When n= 5, 16/-35= 16/-243 =-0.06584
When n= 6, 16/-36= 16/729 =0.02194
When n= 7,16/-37= 16/-2187=-0.00732
When n= 8, 16/-38= 16/6561=0.00244
When n= 9, 16/-39= 16/-19683 =-0.00081
When n= 10, 16/-310= 16/59049=0.00027
The partial sums are
S1=16/-3 =-5.33333
S2=16/-3 +16/9=-5.33333+1.77778
=-3.55552
S3=16/-3 +16/9+16/-27
=-3.55552-0.59259 =-4.14811
S4=16/-3 +16/9+16/-27 + 16/81
=-4.14811+0.19753=-3.95058
S5=16/-3 +16/9+16/-27 + 16/81 +16/-243
=-3.95058-0.06584=-4.01642
S6=16/-3 +16/9+16/-27 + 16/81 +16/-243 +16/729
=-4.01642+0.02194=-3.99448
S7=16/-3 +16/9+16/-27 + 16/81 +16/-243 +16/729 + 16/-2187
=-3.99448-0.00732=-4.00180
S8=16/-3 +16/9+16/-27 + 16/81 +16/-243 +16/729 + 16/-2187 + 16/6561
=-4.00180+0.00244=-3.99936
S9=16/-3 +16/9+16/-27 + 16/81 +16/-243 +16/729 + 16/-2187 + 16/6561 + 16/-19683
=-3.99936-0.00081=-4.00017
S10=16/-3 +16/9+16/-27 + 16/81 +16/-243 +16/729 + 16/-2187 + 16/6561 + 16/-19683 + 16/59049
=-4.00017+0.00027=-3.99990
Therefore, the 10 partial sums are -5.33333, -3.55552, -4.14811, -3.95058, -4.01642, -3.99448, -4.00180, -3.99936, -4.00017 and -3.99990
Find 10 partial sums of the series. (Round your answers to five decimal places.) \(\sum_{n=1}^{\infty }\frac{16}{(-3)^{n}}\)
Summary:
The 10 partial sums of the series. (Round your answers to five decimal places.) \(\sum_{n=1}^{\infty }\frac{16}{(-3)^{n}}\) are -5.33333, -3.55552, -4.14811, -3.95058, -4.01642, -3.99448, -4.00180, -3.99936, -4.00017 and -3.99990.
visual curriculum