Find the equation of the plane tangent to the surface at a given point 7xy + yz + 4xz - 48 = 0; (2,2,2)
Solution:
Given, the equation is 7xy + yz + 4xz - 48 = 0
We have to find the equation of the plane at a given point (2, 2, 2).
We have function,
f(x, y, z) = 7xy + yz + 4xz - 48
In order to find the normal at any particular point point in vector space, we use gradient operator,
\(\bigtriangledown f(x, y, z)=\frac{\partial f}{\partial x}\hat{i}+\frac{\partial f}{\partial y}\hat{j}+\frac{\partial f}{\partial z}\hat{k}\)
\(\frac{\partial f}{\partial x}(7xy+yz+4xz-48)=7y+4z\)
\(\frac{\partial f}{\partial y}(7xy+yz+4xz-48)=7x+z\)
\(\frac{\partial f}{\partial z}(7xy+yz+4xz-48)=y+4x\)
So, \(\bigtriangledown f(x, y, z)=7y+4z+7x+z+y+4x\\=7x+4x+7y+y+4z+z\\\bigtriangledown f(x, y, z)=11x\hat{i}+8y\hat{i}+5z\hat{k}\)
At the given point (2, 2, 2) the normal vector to the surface is given by
\(\bigtriangledown f(2, 2, 2)=11(2)\hat{i}+8(2)\hat{i}+5(2)\hat{k}\\=22\hat{i}+16\hat{i}+10\hat{k}\)
The general form of vector equation is \(\vec{r}.\vec{n}=\vec{a}.\vec{n}\)
Where, \(\vec{r}=\begin{pmatrix} x\\ y\\z \end{pmatrix}.\vec{n}=\begin{pmatrix} 22\\16 \\10 \end{pmatrix}\) is the normal vector and a is any point in the given plane.
The equation of the plane is given by
\(\begin{pmatrix} x\\y \\z \end{pmatrix}.\begin{pmatrix} 22\\16 \\10 \end{pmatrix}=\begin{pmatrix} 2\\2 \\2 \end{pmatrix}.\begin{pmatrix} 22\\16 \\10 \end{pmatrix}\)
So, x(22) + y(16) + z(10) = 2(22) + 2(16) + 2(10)
22x + 16y + 10z = 44 + 32 + 20
22x + 16y + 10z = 96
22x + 16y + 10z - 96= 0
Therefore, the equation of the plane is 22x + 16y + 10z - 96= 0.
Find the equation of the plane tangent to the surface at a given point 7xy + yz + 4xz - 48 = 0; (2,2,2)
Summary:
The equation of the plane tangent to the surface at a given point 7xy+yz+4xz-48=0; (2,2,2) is 22x + 16y + 10z - 96 = 0.
visual curriculum