Find f. f''(θ) = sin(θ) + cos(θ), f(0) = 5, f '(0) = 1
Solution:
It is given that
f''(θ) = sin(θ) + cos(θ)
f’(θ) = ∫f''(θ) dθ = ∫sin(θ) + cos(θ) dθ
f’(θ) = -cos θ + sin θ + C1
It is given that f’(0) = 1
1 = -cos 0 + sin 0 + C1
C1 = 2
f(θ) = ∫f'(θ) dθ = ∫-cos(θ) + sin(θ) + 2 dθ
f(θ) = -sin θ - cos θ + 2θ + C2
It is given that f(0) = 5
5 = -sin (0) - cos (0) + 2(0) + C2
C2 = 6
So we get
f(θ) = -sin θ - cos θ + 2θ + 6
Therefore, f (θ) = -sin θ - cos θ + 2θ + 6.
Find f. f''(θ) = sin(θ) + cos(θ), f(0) = 5, f '(0) = 1
Summary:
If f''(θ) = sin(θ) + cos(θ), f(0) = 5, f '(0) = 1, f (θ) = -sin θ - cos θ + 2θ + 6.
Math worksheets and
visual curriculum
visual curriculum