Find the critical numbers of the function f(x) = x8(x - 3)7
Solution:
To find the critical numbers of the function it needs to be differentiated then equated to zero. Given f(x) = x8(x - 3)7
Differentiating the above function we have,
\(\frac{\mathrm{d} x^{8}(x-3)^{7}}{\mathrm{d} x}= x^{8}\frac{\mathrm{d} (x-3)^{7}}{\mathrm{d} x}+(x-3)^{7}\frac{\mathrm{d} x^{8}}{\mathrm{d} x}\)
\(\frac{\mathrm{d} x^{8}(x-3)^{7}}{\mathrm{d} x}= x^{8}(7)(x-3)^{6}(1)+(x-3)^{7}(8)(x^{7})\)
\(\frac{\mathrm{d} x^{8}(x-3)^{7}}{\mathrm{d} x}= 7x^{8}(x-3)^{6}+8x^{7}(x-3)^{7}\)
To determine the Critical points \(\frac{\mathrm{d} x^{8}(x-3)^{7}}{\mathrm{d} x}\) is equated to zero as shown below:
\(\frac{\mathrm{d} x^{8}(x-3)^{7}}{\mathrm{d} x} = 0\)
Therefore we have:
\( 7x^{8}(x-3)^{6}+8x^{7}(x-3)^{7}\) = 0
\(x^{7}(x-3)^{6}[7x + 8(x-3)] = 0\)
\(x^{7}(x-3)^{6}[15x - 24] = 0\) Which implies:
x7 = 0 ⇒ x = 0
(x - 3)6 = 0 ⇒ x = 3
(15x - 24) = 0 ⇒ x = (24/15) = 8/5
Therefore the critical numbers are x = 0, 3, and 8/5
Find the critical numbers of the function f(x) = x8(x - 3)7
Summary:
The critical numbers of the function f(x) = x8(x - 3)7 are x = 0, 3, and 8/5
visual curriculum