Find the derivative of the function. f(x) = (2x - 2)4 (x2+x+1)5.
Solution:
Given function f(x) = (2x − 2)4 (x2 + x + 1)5
To find the derivative of f(x), we use the product rule of differentiation for f(x)= g(x).h(x), we have
f′(x) = g′(x).h(x) +g(x).h′(x)
Here, g(x)=(2x-2)⁴ ; h(x) = (x2+ x +1)⁵
Hence, g′(x) = 4(2x-2)³(2) = 8(2x-3)³
h′(x) = 5( x2+ x +1)⁴(2x+1)
f′(x)= {8(2x-2)³}{(x2+ x +1)⁵} + {(2x-3)⁴}{ 5( x2+ x +1)⁴(2x+1)}
=(2x-2)³(x2+ x +1)⁴{8(x2+ x +1) + 5(2x-3)(2x+1)}
=(2x-2)³(x2+ x +1)⁴ {8x2+8x+8+20x2 -10x -10}
=(2x-2)³(x2+ x +1)⁴ {28x2-2x-2}
Find the derivative of the function. f(x) = (2x - 2)4 (x2+x+1)5.
Summary:
The derivative of the function. f(x) = (2x - 2)4 (x2+x+1)5 =(2x-2)³(x2+ x +1)⁴ {28x2-2x-2}
Math worksheets and
visual curriculum
visual curriculum