from a handpicked tutor in LIVE 1-to-1 classes
Find the exact length of the curve, y = x3/3 + 1/4x , 1 ≤ x ≤ 3.
Solution:
Length of the curve, y = f(x) from x =a to x = b is given by:
\( \int_{a}^{b}\sqrt{1+f'(x)^{2}} .dx\)
Given, y = x3/3 + 1/4x , 1 ≤ x ≤ 3
dy/dx = [(1/3)×(3x2)]+[(1/4)×(-1)×x-2]
dy/dx = f'(x) = x2-(1/4x2)
Length of the curve
=\( \int_{a}^{b}\sqrt{1+f'(x)^{2}} .dx \)
=\( \int_{1}^{3}\sqrt{1+\left ( x^{2}-\frac{1}{4x^{2}} \right )^{2}} .dx \)
=\( \int_{1}^{3}\sqrt{1+\left ( x^{4}-2\times x^{2}\times \frac{1}{4x^{2}}+\frac{1}{16x^{4}} \right )} .dx \)
=\( \int_{1}^{3}\sqrt{1+\left ( x^{4}-\frac{1}{2}+\frac{1}{16x^{4}} \right )} .dx \)
=\( \int_{1}^{3}\sqrt{x^{4}+\frac{1}{2}+\frac{1}{16x^{4}}} .dx \)
=\( \int_{1}^{3}\sqrt{\left ( x^{2}+\frac{1}{4x^{2}}\right)^{2}} .dx \)
=\( \int_{1}^{3}\left ( x^{2}+\frac{1}{4x^{2}}\right).dx \)
=\( \frac{x^{3}}{3}\Biggr|_{1}^{3} +\frac{1}{4} {\frac{x^{-1}}{-1}}\Biggr|_{1}^{3}\)
=\( \frac{1}{3}\left ( 3^{3}-1 \right )-\frac{1}{4}\left (\frac{1}{3}-1 \right )\)
=26/3 + 1/6
=53/6
Find the exact length of the curve, y = x3/3 + 1/4x , 1 ≤ x ≤ 3.
Summary:
The exact length of the curve, y = x3/3 + 1/4x , 1 ≤ x ≤ 3 is 53/6.
visual curriculum