from a handpicked tutor in LIVE 1-to-1 classes
Find the exact length of the polar curve. r = θ, 0 ≤ θ ≤ π/2
Solution:
Given, r = θ, 0 ≤ θ ≤ π/2
We have to find the exact length of the polar curve.
The formula for calculating the Arc Length is given by
\(L=\int_{a}^{b}\sqrt{r^{2}+(\frac{dr}{d\theta })^{2}}d\theta\)
Here, r2 = θ2
dr/dθ = 1
So, \(L=\int_{0}^{\frac{\pi }{2}}\sqrt{\theta ^{2}+(1)^{2}}d\theta\)
\(L=\int_{0}^{\frac{\pi }{2}}\sqrt{\theta ^{2}+1}d\theta\)
\(L=\left [\frac{\theta \sqrt{\theta ^{2}+1}}{2}+\frac{asinh(\theta )}{2} \right ]_{0}^{\frac{\pi }{2}}\)
\(L=\left [\frac{\frac{\pi }{2} \sqrt{(\frac{\pi }{2})^{2}+1}}{2}+\frac{asinh(\frac{\pi }{2})}{2}-0 \right ]\)
\(L=\left [\frac{\pi \sqrt{(\frac{\pi }{2})^{2}+1}}{2}+\frac{asinh(\frac{\pi }{2})}{2}\right]\)
Therefore, the exact length of the polar curve is \(L=\left [\frac{\pi \sqrt{(\frac{\pi }{2})^{2}+1}}{2}+\frac{asinh(\frac{\pi }{2})}{2}\right]\)
Find the exact length of the polar curve. r = θ, 0 ≤ θ ≤ π/2
Summary:
The exact length of the polar curve. r = θ, 0 ≤ θ ≤ π/2 is \(L=\left [\frac{\pi \sqrt{(\frac{\pi }{2})^{2}+1}}{2}+\frac{asinh(\frac{\pi }{2})}{2}\right]\).
visual curriculum