Given (x - 1)2 = 50, select the values of x.
Solution:
(x - 1)2 = 50
x2 - 2x + 1 = 50
x2 - 2x - 49 = 0
The above equation is a quadratic equation of the form ax2 + bx + c = 0 the roots of which are given by the formula:
\(\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\)
Hence the roots are:
\(\frac{-(-2)\pm \sqrt{(-2)^{2}-4(1)(-49)}}{2(1)}\)
= \(\frac{2\pm \sqrt{4 + 196}{2(1)}\)
= \(\frac{2\pm \sqrt{200}}{2}\)
= \(\frac{2\pm 10\sqrt{2}}{2}\)
= \(\frac{1\pm 5\sqrt{2}}{1}\)
= 1 ± 5√2
The roots are 1 ± 5√2.
Given (x - 1)2 = 50, select the values of x.
Summary:
Given (x - 1)2 = 50, select the values of x are 1 ± 5√2.
Math worksheets and
visual curriculum
visual curriculum