# How to write the slope-intercept form of the equation of the line described; (-2,-1) parallel to y = (-3/2)x - 1?

Coordinate Geometry is a very important topic in mathematics in which various equations are represented as curves on the cartesian, polar, or other types of planes.

## Answer: The slope-intercept form of the equation of the line described; (-2,-1) parallel to y = (-3/2)x - 1 is y = (-3/2)x - 4.

Let us observe the solution step by step.

**Explanation:**

Now, let us have a look at the slope-intercept form of a line.

Given: (x_{1}, y_{1}) = (-2, -1)

From the given equation of straight line y = (-3/2)x - 1

The slope-intercept form of a linear equation is y = mx + b; where m is the slope and b is the y-intercept value.

Hence, the slope of the given line is: m = −3 / 2

As we know that parallel lines have the same slope. Therefore, we can substitute this slope into the formula gives:

y = (-3 /2)x + b ------(1)

Since the line passes through the point (-2, -1), we can substitute in equation 1

-1 = (-3/2) (-2) + b

-1 = 3 + b

b = -4

Now we can substitute the slope and y-intercept into the formula gives:

y = (-3/2)x + (-4)

y = (-3 /2)x - 4