If h(θ) = θ cos θ , find h'(θ) and h''(θ).
Solution:
Given if h(θ) = θ cos θ
Consider θ as a variable and differentiate w.r.t θ
Using the product rule :
h'(θ) = cosθ * 1 + θ * (-sin θ)
h’(θ) = cosθ - θsinθ — (a)
h’’(θ) = -sinθ - {sinθ*1 + θcosθ}
h’’(θ) = -sinθ - sinθ - θcosθ
h’’(θ) = -2sinθ - θcosθ — (b)
If h(θ) = θ cos θ , find h'(θ) and h''(θ).
Summary:
If h(θ) = θ cos θ, then h'(θ) = cosθ - θsinθ and h''(θ) = -2sinθ - θcosθ.
Math worksheets and
visual curriculum
visual curriculum