# In parallelogram LONM, what is OM?

**Solution:**

Given parallelogram LOMN, and the diagonals OM and LN

We know a property that the diagonals of parallelogram bisect each other, hence they divide into two equal halves

So, OQ = QM

2x + 3 = 3x - 4

3 + 4 = 3x - 2x

7 = x

Hence, OM = OQ + QM

OM = 2x + 3 + 3x - 4

OM = 5x - 1

OM = 5(7) - 1

OM = 35 - 1

OM = 34

Therefore, OM = 34

## In parallelogram LONM, what is OM?

**Summary:**

In parallelogram LONM, the value of OM is 34.

Math worksheets and

visual curriculum

visual curriculum