from a handpicked tutor in LIVE 1-to-1 classes
Solve: (1 + tan2A) / (1 + cot2A) = [(1 - tan A) /(1 - cotA)]2 = tan2A.
Trigonometric Identities are the equations that are true for right-angled triangles. We can use different trigonometric identities to prove the above expression.
Answer: (1 + tan2A) / (1 + cot2A) = [(1 - tan A) /(1 - cotA)]2 = tan2A.
Let us proceed from LHS. We will apply trigonometric identities to prove the result.
Explanation:
LHS: (1+ tan² A) / (1+ cot² A)
From the trigonometric identities, we know that
1+ tan² A = sec² A and 1 + cot²A = cosec² A
Therefore, LHS = sec² A / cosec² A
After taking the reciprocal of sec² A and cosec² A we get
⇒ sin² A / cos² A = tan² A
RHS: (1 - tan A)² / (1 - cot A)²
On substituting the reciprocal of tan A and cot A we get,
= (1- sin A / cos A)² / (1- cos A / sin A)²
= [(cos A - sin A) / cos A]² / [(sin A - cosA) / sin A)²]
= [(cos A - sin A)² × sin² A] / [cos²A × (sin A - cos A)²]
= (sin² A) / (cos² A)
= tan² A
Therefore, LHS is equal to RHS.
Hence we proved (1 + tan2A) / (1 + cot2A) = [(1 - tan A) /(1 - cotA)]2 = tan2A.
visual curriculum