Solve the differential equation by variation of parameters. y''+3y'+2y = cos(ex)
Solution:
We begin with the associated homogeneous equation :
y''+3y'+2y = 0
The solution of which is:
\( y_{h} = c_{1}e^{-x} + c_{2}e^{-2x} \)
Next we find a particular solution using variation of parameters method:
y₁ = \( e^{-x} \)
y₂ = \( e^{-2x} \)
g(x) = \( cos(e^{x}) \)
W(y₁, y₂) = y₁y₂’ - y₁’y₂
= \( e^{-x}(-2)( e^{-2x}) - (-( e^{-x})(e^{-2x}) \)
=-2( \( e^{-3x}) + e^{-3x} \)
=- \( e^{-3x} \)
u₁ = - \( \int \frac{y_{2}g(x)}{W(y_{1},y_{2})}dx \)
= - \( \int \frac{e^{-2x}Cos(e^{x})}{-e^{-3x}} \)
= \( \int e^{x}Cos(e^{x}) \)
= \( sin(e^{x}) \)
u₂ = \( \int \frac{y_{1}g(x))}{W(y_{1},y_{2})}dx \)
= \( \int \frac{e^{-x}Cos(e^{-x})}{-e^{-3x}} \)
= \( \int e^{2x}Cos(e^{x})dx \)
= - \( e^{x}Sin(e^{x}) - Cos(e^{x}) \)
\( y_{p} = y_{1}u_{1}+ y_{2}u_{2} \)
= \( e^{-x}Sin(e^{x}) + e^{-2x}(-e^{x}(Sin(e^{x}) - Cos(e^{x})) \)
= -\( -e^{-2x}Cos(e^{x}) \)
y = \( y_{h} + y_{p} \)
y = \( c_{1}e^{-x} + c_{2}e^{-2x} -e^{-2x}Cos(e^{x})\)
Solve the differential equation by variation of parameters. y''+3y'+2y = cos(ex)
Summary:
Using the variation of parameters method the solution of the equation is y = \( c_{1}e^{-x} + c_{2}e^{-2x} -e^{-2x}Cos(e^{x})\)
visual curriculum