Solve the following system of equations; x + 3y - z = 2, x - 2y + 3z = 7, x + 2y - 5z = -21
Solution:
We have a system of linear equations of three variables.
Let the equations x + 3y - z = 2--------->(1)
⇒ x - 2y + 3z = 7 --------->(2)
⇒ x + 2y - 5z = -21 --------->(3)
Let us solve them using the substitution method.
By solving equation [1] for the variable z, we get
⇒ z = x + 3y - 2--------->(4)
Substitute the value of z = x + 3y - 2 in equation [2]
⇒ x - 2y + 3(x + 3y - 2) = 7
= x - 2y + 3x + 9y - 6 = 7
⇒ 4x + 7y = 13--------->(5)
Substitute the value of z = 3x + 6y - 1 in equation [3]
⇒ x + 2y - 5(x + 3y - 2) = - 21
⇒ x + 2y -5x -15 y + 10 = -21
⇒ 4x + 13y = 31--------->(6)
Subtracting eq (5) from (6), we get
⇒ (4x + 7y = 13) - (4x + 13y = 31)
⇒ 6y = 18 or y = 3
Put the value of y = 3 in equation (5) to get the value of x.
⇒ 4x + 7 (3) = 13
⇒ 4x = 13 - 21
⇒ x = - 2
Put values of x and y in equation (4).
z = -2 + 3(3) -2
⇒ z = - 2 + 9 - 2
⇒ z = 5
Solve the following system of equations; x + 3y - z = 2, x - 2y + 3z = 7, x + 2y - 5z = -21
Summary:
By solving the system of linear equations x + 3y - z = 2, x - 2y + 3z = 7, x + 2y - 5z = -21; we get (x, y, z) = (-2, 3, 5)
visual curriculum