Solve the triangle. B = 36°, a = 42, c = 18
Solution:
Given B = 36°, a = 41, c = 20
According to the law of cosines, b2 = a2 + c2 - 2ac cos B
b2 = 412 + 202 - 2(41)(20)cos(36°)
b2 = 1681 + 400 - 1640(0.8090)
b2 = 754.24
b =√(754.24)
b = 27.46
According to the laws of sines
SinA/a = SinB/b
sinA/ 41 = Sin36°/ 27.46
sinA = 41 × 0.021
sin A = 0.873
A = Sin-1(0.873)
A = 60.84°
we know that the sum of all angles of a triangle is 180 degrees.
A + B + C = 180°
60.84 + 36 + C = 180°
C = 180 - 96.8
C = 83.15°
Therefore, B = 36°, a = 42, c = 18, b = 27.46, A = 60.84° and C = 83.15°.
Solve the triangle. B = 36°, a = 42, c = 18
Summary:
By solving the triangle, B = 36°, a = 42, c = 18 we get b = 27.46, A = 60.84° and C = 83.15°.
Math worksheets and
visual curriculum
visual curriculum