Solve x2 + 9x + 20. x = 2, x = 10, x = −2, x = −10 x = −5, x = −4, x = 5, x = 4
The above quadratic equation is in the form of ax2 + bx + c
Answer: The quadratic equation is satisfied when x = -5, and x = -4
Substituting the given values of 'x' in the quadratic equation, we will check the values for which the equation will be equal to 0.
Explanation:
f(x) = x2 + 9x + 20
If x = 2, (2)2 + 9(2) + 20 = 4 + 18 + 20 = 42
If x = 10, (10)2 + 9(10) + 20 = 100 + 90 + 20 = 210
If x = -2, (-2)2 + 9(-2) + 20 = 4 - 18 + 20 = 6
If x = -10, (-10)2 + 9(-10) + 20 = 100 - 90 + 20 = 30
If x = -5, (-5)2 + 9(-5) + 20 = 25 - 45 + 20 = 0
If x = -4, (-4)2 + 9(-4) + 20 = 16 - 36 + 20 = 0
If x = 5, (5)2 + 9(5) + 20 = 25 + 45 + 20 = 90
If x = 4, (4)2 + 9(4) + 20 = 16 + 36 + 20 = 76
Therefore, after substituting the values of 'x', we get the solution of the quadratic equation when x = -5, and when x = -4
Math worksheets and
visual curriculum
visual curriculum