Use an Addition or Subtraction Formula to find the exact value of the expression: sin 255°
Solution:
Given function sin255°
We can re-write the function as sin(75 + 180) for easier calculation
sin 255° = sin (75° + 180°) = -sin 75°.
Let’s find sin 75° by using the trignometric identity:
sin (a + b) = sin a.cos b + sin b.cos a
Now, sin 75° = sin (30° + 45°)
sin75°= sin 30°.cos 45° + sin 45°.cos 30°
We know that sin30° = 1/2 , sin45° = 1/√2 , cos30° = √3/2 and cos45° = 1/√2
Substitute these values,
sin75° = (1/2)(1/√2) + (1/√2)(√3/2)
sin75°= (1/√2)(1/2 + √3/2)
= √2 + √6 /4 [by multiplying and dividing by √2 ]
Finally, sin255° = -sin75°
= -{√2 + √6} /4
Use an Addition or Subtraction Formula to find the exact value of the expression: sin 255°
Summary:
By using an Addition or Subtraction Formula to find the exact value of the expression: we got sin 255° = -{√2 + √6} /4
Math worksheets and
visual curriculum
visual curriculum