Use the chain rule to find dz/dt. z = sin(x) cos(y), x = t , y = 5 / t
Solution:
The chain rule of differentiation is given by
dz / dt = (dz / dx)(dx / dt) + (dz / dy)(dy / dt)
Given, z = sin(x) cos(y)
dz/dx = d(sinx cosy) / dx
dz/dx = cosx cosy
dx/dt = 1
dz/dy = sinx(-siny)
dy/dt = 1/5
dz/dx = cosx cosy (1) - sinx siny(1/5)
dz/dx = 1/5[5(cosx cosy) - sinx siny]
Put x=t and y=t/5
dz/dx = 1/5 [5(cos(t) cos(t/5) - sin(t) sin(t/5)] ------------------------ (1)
We know, cosA cosB = 1/2[cos(A + B) + cos(A - B)]
cos(t) cos(t/5) = 1/2[cos(t + (t / 5)) + cos(t - (t / 5))]
cos(t) cos(t/5) = 1/2 [cos(6t / 5) + cos(4t / 5)] --------------------------- (2)
We know, sinA sinB = 1/2 [cos(A - B) - cos(A + B)]
sin(t) sin(t/5) = 1/2 [cos(t - (t/5)) - cos(t + (t/5))]
sin(t) si(t/5) = 1/2 [cos(4t / 5) - cos(6t / 5)] -------------------------------- (3)
Substitute (2) and (3) in (1)
dz/dt = 1/5 [5(1/2[cos(6t / 5) + cos(4t / 5)]) - 1/2 [cos(4t / 5)-cos(6t / 5)]]
Taking out 1/2 in RHS,
dz/dt = 1/10[ 5 cos(6t / 5)+5 cost(4t / 5) - cos(4t / 5) + cos(6t / 5)]
dz/dt = 1/10 [6 cos(6t / 5) + 4 cos(4t / 5)]
dz/dt = 1/10 [6 cos(6t / 5)] + 1/10 [4 cos(4t / 5)]
dz/dt = 3/5 [cos(6t / 5)] + 2 / 5[cos(4t / 5)]
Therefore, dz/dt by chain rule is 3 / 5[cos(6t / 5)] + 2 / 5[cos(4t / 5)]
Use the chain rule to find dz/dt. z = sin(x) cos(y), x = t , y = 5 / t
Summary:
The value of dz/dt when z = sin(x)cos(y) for x = t and y = t / 5 using chain rule is 3/5[cos(6t / 5)] + 2/5 [cos(4t / 5)]
visual curriculum