What are the zeros of the quadratic function f(x) = 6x2 + 12x - 7?
Solution:
Given, f(x) = 6x2 + 12x - 7
We have to find zero of the quadratic function.
By using quadratic formula,
\(x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\)
Here, a = 6, b = 12, c = -7
\(x=\frac{-12\pm \sqrt{(12)^{2}-4(6)(-7)}}{2(6)}\)
\(x=\frac{-12\pm \sqrt{144+168}}{12}\)
\(x=\frac{-12\pm \sqrt{312}}{12}\)
\(x=\frac{-12\pm17.66}{12}\)
Now, \(x=\frac{-12+17.66}{12}=\frac{5.66}{12}=0.47\)
\(x=\frac{-12-27.13}{12}=\frac{-39.13}{12}=-3.26[\)
Therefore, the zeros of the function are 0.47 and -3.26.
What are the zeros of the quadratic function f(x) = 6x2 + 12x - 7?
Summary:
x = -3.26 and x = 0.47 are zeros of the quadratic function f(x) = 6x2 + 12x - 7.
Math worksheets and
visual curriculum
visual curriculum